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SUMMARY
Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific plurip-

otent stem cell sources—potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from pa-

tients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC) lines.We then utilized zinc-finger

nucleases (ZFNs), designed to target the endogenousCFTR gene, tomediate correction of the inherited geneticmutation in these patient-

derived lines via homology-directed repair (HDR). We observed an exquisitely sensitive, homology-dependent preference for targeting

one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected

CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chlo-

ride channel function in iPSC-derived epithelial cells.
INTRODUCTION

Cellular transplantation of lung stem/progenitor cells

represents a potential therapeutic approach for a variety

of inherited monogenic lung diseases. A patient-specific

approach would first involve derivation of autologous

induced pluripotent stem cells (iPSCs) from skin or blood

cells of affected patients. Utilizing site-specific homology-

directed repair (HDR), the disease-causing mutation would

then be corrected in the endogenous, chromosomal DNA

sequence. Finally, a directed differentiation approach

would be employed to obtain highly purified populations

of the relevant lung stem/progenitor cells from the cor-

rected iPSCs for the purpose of transplantation.

We focused our initial development of this therapeutic

approach on cystic fibrosis (CF). The primary defect in

CF, an autosomal recessive disorder, is the regulation of

epithelial chloride transport by a chloride channel protein

encoded by the CF transmembrane conductance regulator

(CFTR) gene (Kerem et al., 1989). Recurrent pulmonary in-

fections are responsible for 80%–90% of the deaths in CF

patients. Therefore, transplantation of CFTR-corrected,

autologous lung stem/progenitor cells provides an attrac-

tive alternative strategy for treating CF.
Here we used zinc-finger nuclease (ZFN)-mediated HDR

to edit the endogenous CFTR locus and precisely correct

mutations responsible for CF in patient-derived iPSCs.
RESULTS

Correction of CFTR Mutation via ZFN-Mediated HDR

in CF iPSCs

Retroviral vectors encoding reprogramming factors (OCT4,

SOX2, KLF4, C-MYC, and NANOG) were utilized to repro-

gramCF primary fibroblasts to iPSCs; the CF fibroblasts and

derived iPSCs were compound heterozygous at the CFTR

locus, with one alleleDF508 and the other alleleDI507 (Fig-

ure S1A). CF iPSC clones expressed cellular antigens charac-

teristic of undifferentiated human embryonic stem cells

(hESCs), were pluripotent as assayed by teratoma forma-

tion, and retained a normal karyotype (Figures S1B–S1D).

The overall strategy for correction ofCFTR exon 10 (CFTR

legacy exon notation) mutations consisted of delivering

CFTR-specific ZFNs together with a selectable CFTR donor

DNA (Figure 1A). We designed ZFNs targeting CFTR exon

10, recognizing DNA sequences approximately 110 bp up-

stream of either the DI507 or DF508 deletions, to facilitate
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Figure 1. ZFN-Mediated Correction of DI507 or DF508 CFTR Mutations in CF iPSCs
(A) Outline of methodology involving co-delivery of CFTR-specific ZFNs together with CFTR donor, followed by Cre-recombinase-mediated
excision.
(B) The schematic shows the expected genomic organization of a targeted CFTR allele including the WT exon 10 (shown in black) together
with the pgk-puroTK selection cassette. A unique 6.4-kb hybridizing band is expected for a correctly modified clone and is apparent in the
four corrected clones (17-14, 17-1, 17-16, and 17-9), but absent in the Cre-excised clones and the non-targeted clone 17 CF iPSCs.
(C) Sequence chromatograms of the modified WT and unmodified DF508 CFTR alleles from corrected CF iPSC clones.
See also Figure S1.
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the correction of either mutant allele by HDR. The CFTR

ZFNs were co-delivered with a plasmid encoding the

CFTR donor to CF iPSCs. Puromycin-resistant colonies

were initially screened via PCR and then sequenced to

confirm that CFTR exon 10 was corrected via HDR. South-

ern blot analysis confirmed that four clones (17-1, 17-9,

17-14, and 17-16) exhibited the expected genomic organi-

zation in the corrected CFTR allele without any additional

integration of pgk-puroTK sequences (Figure 1B). Seq-

uencing of CFTR genomic DNA exon 10 sequences at tar-

geted (wild-type [WT]) and unmodified (DF508) alleles for

each of the four corrected clones demonstrated correction

of one CFTR allele (DI507) per clone (Figure 1C). Transient

delivery of a Cre-recombinase expression plasmid resulted

in numerous puroTK-excised clones from each of the four
2 Stem Cell Reports j Vol. 4 j 1–9 j April 14, 2015 j ª2015 The Authors
successfully edited clones; successful excision was con-

firmed via PCR analysis with subsequent Cla I digestion

(Figures 2A and 2B) and Southern blot analysis (Figure 1B).

We demonstrated that two of two correctly edited

puroTK-excised iPSC clones (17-9-C1 and 17-14-C1) re-

tained pluripotency, as evidenced by teratoma-forming

ability (Figures S2A and S2C); furthermore, quantitative

transcriptional profiling of 44 genes characteristic of

human pluripotent stem cells revealed that both corrected

iPSC lines (17-9-C1 and 17-14-C1) exhibited a gene expres-

sion pattern highly similar to both the original uncorrected

CF iPSCs (clone 17) and hESCs (line WA09) (Figures S2B

and S2D).

Karyotypic analysis of 17-9-C1 and 17-14-C1 confirmed

retention of a normal karyotype (Figures S2A and S2C).



Figure 2. Cre-Mediated Excision of pur-
oTK Cassette from Corrected CF WT/
DF508 iPSCs
(A) Schematic of the modified allele, before
and after Cre-mediated excision, and the
unmodified allele. The location of PCR
primers (arrows marked 3 and 30), both
located outside of donor sequences, used in
verification by amplification are shown. Also
indicated are the expected sizes of Cla I
digestion products.
(B) (Top) The PCR amplicons for the original
targeted clones (17-9 and -16), the Cre-
excised clones (17-9-C1 and -C2; 17-16-C1
and -C2), and the original clone 17 CF iPSCs.
The presence of only the 1.8-kb band for
Cre-excised clones is consistent with suc-
cessful excision. (Bottom) The results of Cla
I digestion of the PCR amplicons. The size of
bands for the Cre-excised clones is consis-
tent with successful excision.
(C) RT-PCR analysis of CFTR expression for
two targeted CF iPSCs (17-9 and -16) as well
as their derived Cre-excised clones. Also
shown is CFTR expression by the original
clone 17 CF iPSCs and CFTR-expressing Calu-
3 cells; mouse embryo fibroblasts (MEFs)
and HEK293TN cells are negative controls.
(D) Sequencing of CFTR RT-PCR product from
mutant DI507/DF508 CFTR iPSCs (clone 17)
revealed a mixture ofDI507 andDF508 CFTR
sequences.
(E) Sequencing of CFTR RT-PCR product from
corrected WT/DF508 CFTR iPSCs (clones
17-9 and 17-16), together with their Cre-
excised derivatives, revealed a mixture of
WT and DF508 CFTR sequences.
See also Figure S2 and Tables S1 and S2.
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Comparative genomic hybridization (CGH), validated by

complete genome sequencing, did not identify any copy-

number variations in corrected clones 17-9-C1 and 17-14-

C1 not already present in uncorrected clone 17 iPSCs. To

assess any off-target effects of ZFN- or Cre-mediated exci-

sionmethodologies at higher resolution, we also submitted

genomic DNA from corrected clones 17-9-C1 and 17-14-

C1, aswell as from theCF fibroblasts and clone 17CF iPSCs,

for whole-exome and complete genome sequencing. Con-

cordance between exome and whole-genome sequencing

was high, validating the variations identified as well as

our analysis methodology. We detected only one non-syn-

onymous coding variant (NSCV) unique to clone 17 iPSCs

and not present in the original mutant CF fibroblasts. We

identified, in comparison with the parental clone 17 iPSCs,
two novel NSCVs in 17-9-C1 and eight novel NSCVs in

17-14-C1; these changes consisted entirely of single-base-

pair substitutions (Table S1). The DNA sequences flanking

these variants were examined to determine whether the

DNA variations in the ZFN-corrected iPSCs possibly re-

sulted from non-homologous end joining (NHEJ) at sites

of off-target cutting by the ZFNs. Importantly, the NSCV

found in the corrected cell lines did not share significant

homology to any permutation of ZFN target site (Table

S1). Additionally, we did not find any variations that

were shared by the two corrected cell lines. Taken together,

the type of mutation, the lack of commonality between

clones, and the lack of homology to ZFN target sites at/

around these changes argue strongly against any ZFN off-

target activity in these lines at the whole-exome level. In
Stem Cell Reports j Vol. 4 j 1–9 j April 14, 2015 j ª2015 The Authors 3
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Figure 3. In Vitro Differentiation of Corrected CF WT/DF508 iPSCs
(A) Outline of the defined, step-wise differentiation protocol used to generate anterior foregut cell fates.
(B) Gene expression analysis of day 19 differentiated mutant (17 and 28), corrected CF iPSCs (17-9-C1, 17-14-C1, and 17-16-C1), and WA09
hESCs indicates upregulation of lung and pan-endodermal markers. Data (mean ± SD, three well replicates) from a representative
experiment further characterized in Figures 3C and 3G. See also Figure S3E.
(C) Western blot analysis of protein lysates from day 19 differentiation cultures probed with a CFTR-specific antibody. Detection of
Calnexin demonstrated equal sample loading for differentiated iPSC/hESC samples. See also Figures S3D and S3F.
(D) Representative short-circuit current (Isc) traces of epithelial monolayers differentiated from mutant (17) and corrected (17-16-C1) CF
iPSC by Ussing chamber analysis. Cells were treated with either DMSO (0.03%) or VX809 (3 mM) for 24 hr. After establishment of Cl�

gradient and the addition of amiloride, monolayers were treated with forskolin and genistein followed by the administration of CFTR
inhibitor 172. The change in Isc (mA/cm2) for each perturbation is shown. Only corrected clone 17-16-C1 demonstrates the presence of
CFTR channels in the cell membrane, as evidenced by activation of cAMP-dependent short-circuit currents. The addition of CF corrector
VX809 to differentiated clone 17 sample partially restores CFTR-mediated chloride activity.
(E) Aggregated data of short-circuit current measurements from an experiment with differentiated mutant (17), with or without CF
corrector VX809, and corrected (17-16-C1) CF iPSC (three transwell replicates per sample, mean ± SD.
(F) Aggregated data of short-circuit current measurements from an experiment with differentiated mutant (17) and corrected (17-16-C1),
with or without CF corrector VX809, and WA09 hESC control (five transwell replicates per sample, mean ± SD).
(G) Aggregated data of short-circuit current measurements from an experiment including all independent mutant (17 and 28) and cor-
rected (17-9-C1, 17-14-C1, and 17-16-C1) differentiated CF iPSC clones (three to six transwell replicates per sample, mean ± SD).
(H) Aggregated data of short-circuit current measurements; graphed is the maximum change in short-circuit current resulting from the
addition of forskolin and genistein. Shown is the mean ± SE. The comparison shown is between two mutant CF clones (17 and 28; total of
four independent differentiated experimental samples, three to six transwell replicates per sample) and three corrected CF clones (17-9-C1,

(legend continued on next page)
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addition, we interrogated the complete genome sequences

of the two corrected iPSC clones (17-9-C1 and 17-14-C1) at

the top 100 ranked potential off-target ZFN-binding se-

quences (representing either homo-dimer or hetero-dimer

binding) for any evidence of cleavage (see Supplemental

Experimental Procedures). No evidence for NHEJ-induced

mutation, either in exon or intron sequences, was identi-

fied (Table S2), again arguing against any ZFN off-target ac-

tivity in these lines.

We similarly applied the ZFN-mediated gene correction

methodology to two transgene-free CF iPSC lines homozy-

gous for the DF508 mutation. These CF iPSC lines (RC202

and RC204) were originally derived by reprogramming of

DF508/DF508 CF fibroblasts with a Cre-excisable polycis-

tronic lentiviral vector (Somers et al., 2010). A total of six

corrected iPSC clones (five from RC202 and one from

RC204) were obtained, each of which was corrected at

one of the two DF508 alleles (i.e., of resulting genotype

WT/DF508) (data not shown).

Expression of theCorrectedCFTRGene inGene-Edited

iPSCs and iPSC-Derived Cells

We detected low-level CFTR expression in the original,

uncorrected DI507/DF508 clone 17 iPSCs (Figure 2C) and

WA09 hESCs (data not shown) by RT-PCR. Similarly RT-

PCR analysis for clones 17-1, -9, -14, and -16 yielded a

single band of similar size to that seen for clone 17 iPSCs

(Figure 2C). Sequencing of the clone 17 iPSC line RT-PCR

product demonstrated CFTR mRNA expression arising

from both the DI507 and DF508 alleles (Figure 2D).

Sequencing of the RT-PCR product from the four corrected

clones, both prior to and following pgk-puroTK excision,

confirmed the expected cDNA organization (exons 9–13)

and demonstrated CFTR mRNA expression from both the

corrected and mutant alleles (DF508) (Figure 2E).

We next examined expression of corrected CFTR mRNA

and protein under in vitro differentiation conditions previ-

ously demonstrated to generate anterior foregut endoderm

and primordial lung progenitors from mouse ESC (Long-

mire et al., 2012) and human ESC/iPSC (Green et al.,

2011). Inbrief, after inductionofdefinitive endoderm, inhi-

bition of BMP/TGF-b signaling with NOGGIN/SB431542

was employed to enrich for anterior foregut endoderm.

Subsequent exposure to growth factors implicated in

lung development and maturation (WNT3a/KGF/FGF10/

BMP4/EGF and retinoic acid) was then used to induce

expression of NKX2-1, the earliest marker of commitment

of endoderm to either a lung or thyroid epithelial cell fate
17-14-C1, and 17-16-C1; total of five independent differentiated ex
Results were clustered by clonal cell line and experiment number; stat
restricted maximum likelihood to account for correlated replicates w
See also Figure S3.
(Figure 3A). Employing this protocol, mutant CF iPSCs

(two independent clones, 17 and 28), corrected CF iPSCs

(three clones, 17-9-C1, 17-14-C1, and 17-16-C1, indepen-

dently obtained from correction of mutant clone 17), and

WA09 hESCs efficiently generated definitive endoderm, as

evidenced by co-expression of CXCR4 and C-KIT in >90%

of cells (Figure S3A) and upregulated expression of endo-

dermal transcriptional regulators, FOXA2 and SOX17

mRNA, by qPCR (data not shown). Further endodermal dif-

ferentiation, for a total of 19 days in this protocol, subse-

quently upregulated expression of NKX2-1, SOX9, TP63,

FOXP2, and FOXA2, suggesting commitment of at least a

sub-population of cells within the endodermal culture to

a lung epithelial cell fate (Longmire et al., 2012), and

demonstrated increased expression of the CFTR target

gene (Figure 3B), as expected from differentiated endoder-

mally derived epithelia. Immunostaining confirmed that

a subpopulation of cells co-expressed NKX2-1 and FOXA2

in this directeddifferentiationprotocol (Figure S3B). Impor-

tantly,CFTRmRNAexpressed onday19 fromdifferentiated

mutant CF iPSCs (clone 17) reflected expression of both

mutant DI507 and DF508 CFTR alleles, whereas differentia-

tionof corrected iPSCs (17-16-C1) revealed co-expressionof

correctedWTandmutantDF508CFTRmRNAs (Figure S3C).

These results indicate appropriately regulated gene expres-

sionof the correctedWTallele, in comparison to themutant

DF508 allele, in the corrected iPSC-derived cells.

CF patients, either compound heterozygous DI507/

DF508 or homozygous DF508/DF508, fail to express the

mature, fully glycosylated CFTR protein. Correction of

either allele, corresponding to carrier state WT/DF508 or

WT/DI507, should result in restored expression of the

matureCFTR glycoform.Westernblotting of protein lysates

from day 19 differentiation cultures, probed with a CFTR-

specific antibody, identified the mature 170-kDa CFTR

protein in differentiated WT CFTR, WA09 hESCs, and in

differentiated corrected iPSCs (17-9-C1, 17-14-C1, and 17-

16-C1), but not in differentiated DI507/DF508 iPSCs

(clones 17 and 28; Figure 3C). The identity of the mature

glycoform is confirmed by its presence in HEK293TN cells

transfected withWT CFTR, but not DF508, expression con-

structs (Figure S3D), as well as in WT CFTR-expressing

Calu-3 cells (Figures 3C and S3F). In addition, its identity

as the mature CFTR protein is verified by its reduction in

molecular weight upon treatment with peptide-N-glycosi-

dase (PNGase F; Figure S3F). These results are consistent

with maturation of CFTR protein from the corrected CFTR

allele in cells derived from the ZFN-edited iPSC clones.
perimental samples, three to six transwell replicates per sample).
istical analysis was performed using a linear mixed-effect model by
ithin the same experiment.
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Restoration of CFTR Chloride Channel Function in

Gene-Edited iPSC-Derived Epithelial Monolayers

To examinewhetherCFTR gene correction resulted in func-

tional rescue of CFTR chloride channel activity, we initially

selected the mutant (clone 17) and the corrected CF iPSC

line (17-16-C1) for analysis. iPSCs were differentiated for

19 to 20 days as outlined above, replated onto permeable

supports, and grown until confluent monolayers were es-

tablished. Assessment of functional CFTR chloride channel

activity in iPSC-derived epithelial monolayers was per-

formed by Ussing chamber analysis. Sodium channel activ-

ity was first blocked by amiloride to establish a baseline.

Stimulation with forskolin and genistein increased CFTR-

dependent short-circuit current (Isc) for corrected 17-16-

C1, but not for mutant clone 17 (Figures 3D and 3E). The

addition of CFTR inhibitor 172 decreased Isc levels back

to baseline and verified the CFTR specificity of the assay

(Figures 3D and 3E). Mutant clone 17 monolayers, when

treated with VX809 (a CFTRmodulator capable of partially

correcting the defective folding and aberrantmaturation of

DF508 mutant CFTR), exhibited partial restoration of

CFTR-mediated chloride transport (Figures 3D and 3E).

To evaluate the extent of functional correction, in a

subsequent experiment we demonstrated that 17-16-C1-

derived cells functioned similarly to those of control

WA09 hESCs, and they showed no further significant in-

crease in CFTR chloride channel activity when treated

with VX809 (Figure 3F). These results establish functional

expression of WT CFTR in corrected clone 17-16-C1 sam-

ples. A second functional measurement, iodide efflux anal-

ysis, confirmed successful CFTR gene correction in clone

17-16-C1.Mutant and corrected CF-iPSC-derived epithelial

monolayers were loaded with radioactive 125Iodide and

subsequently stimulated with forskolin and genistein to

activate cAMP-sensitive CFTR anion transport. In contrast

to mutant clone 17 cells, corrected 17-16-C1 cell samples

released higher levels of 125Iodide following stimulation

(Figure S3G). The suppression of 125I-efflux with CF inhib-

itor 172 demonstrated specificity for CFTR channels in cor-

rected clone 17-16-C1 (Figure S3G). To ensure that func-

tional correction seen for 17-16-C1 was not simply an

anomalous feature of this specific clone, we assayed CFTR

functional activity, in addition to the originally assayed

17 and 17-16-C1, in an additional mutant CF iPSC line

(28) and two additional corrected CF iPSC lines, each of

which were independently derived from mutant clone 17

(17-9-C1 and 17-14-C1). Whereas both mutant clones

showed similar non-responsive behavior, all three cor-

rected iPSC clones yielded epithelial monolayers with

CFTR functional activity increased with respect to both

mutant clones 17 and 28 (Figure 3G). When considered

together, the three corrected CF clones (17-9-C1, 17-14-

C1, and 17-16-C1) exhibited maximum short-circuit cur-
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rents significantly greater than mutant CF clones (17 and

28) (Figure 3H, p = 0.028). These functional results exhibit

a strong correlation with the expression of fully glycosy-

lated CFTR protein in the corrected clones (Figure 3C).
Allele-Preferred Targeted Correction

In our targeted correction of the DI507/DF508 clone 17

iPSCs, we observed a strong preference for targeting the

DI507 allele versus the DF508 allele; sequencing of the un-

modified allele yielded either the DI507 mutant allele (pre-

sent in 3 of 21 clones) or DF508 mutant allele (in 18 of 21

clones) (a DI507/DF508 targeting ratio of 6:1) (Figure 4A).

Although we initially speculated that perhaps a greater

level of chromatin accessibility or transcriptional activity

for one allele versus the other may have been responsible,

our sequencing of CFTR cDNA from the original DI507/

DF508 iPSCs, as shown previously, revealed transcriptional

activity from both mutant alleles (Figure 2D).

To investigate the cause of this allele-specific correction,

we fully sequenced the 1.6-kb endogenousCFTR sequences

homologous to the donorDNAused in the targeting vector,

of each mutant allele (DI507 or DF508), to determine

whether the donor was truly isogenic for both alleles. This

analysis revealed a single-base-pair difference (A > G) in

intron 9, 76 bp upstream of the ZFN cleavage site, present

in the DF508 mutant allele, but absent in both the DI507

mutant allele and the donor (Figure 4B). In classical homol-

ogous recombination, isogenic regions of homology are

preferred for donor construction; thus, we speculated that

this single-base-pair difference occurring selectively in the

DF508 allele of the CF iPSCs may have caused this selective

behavior. To test this hypothesis, we introduced this A > G

mutation into the donor sequences to see whether this

donor would now selectively favor targeting of the DF508

allele. As shown in Figure 4A, the A > G single-base-pair

substitution did in fact skew the allele-specific targeting

from the DI507 allele to the DF508 allele (from a

DI507:DF508 ratio of 6:1 for the A donor to a DI507:DF508

ratio of 1:3.7 for theGdonor, a net 22-fold change resulting

from a single-base-pair change).Molecular characterization

and sequencing of these DF508-targeted, puromycin-resis-

tant iPSC clones now identified three clones with specific

correction of the DF508 allele. As such, these clones were

now of WT/DI507 CFTR genotype.
DISCUSSION

We utilized ZFN-mediated gene editing (Urnov et al., 2005;

Hockemeyer et al., 2009) to correct, in a site-specific

manner, the CFTR mutation in iPSCs derived from CF pa-

tients. The generation of iPSCs from CF patients has been

reported previously, with subsequent differentiation into



Figure 4. Allele-Preferred Targeting of CF
iPSCs
(A) Schematic of donor 1 and donor 2 en-
gineered with respective A or G base change
at intron 9; results from a total of two
independent targeted-integration experi-
ments with either donor 1 or donor 2 are
shown.
(B) Schematic of uncorrected CFTR alleles
DI507 and DF508, highlighting A or G base
within intron 9.
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epithelial cells (Somers et al., 2010; Mou et al., 2012; Wong

et al., 2012; Sargent et al., 2014). The design and assess-

ment of CFTR-specific nucleases also has been reported pre-

viously (Maeder et al., 2008; Lee et al., 2012; Sargent et al.,

2014), including repair of the mutant CFTR gene. Site-spe-

cifically editing the endogenous gene (Garate et al., 2013)

offers the potential for physiologically regulated expres-

sion of the therapeutic gene, retaining the expression of

alternately spliced isoforms and eliminating the potential

interfering influence of inherited mutations that may be

dominant negative. In vitro differentiation of the mutant

CF iPSCs into lung epithelial cells and tissue, controlled

for by the parallel differentiation of the otherwise isogenic

corrected CF iPSCs, may provide a valuable tool for exam-

ining the functional consequence of mutant CFTR expres-

sion. Furthermore, corrected CF iPSCs present a potential

source of patient-specific cells capable, in vitro, of differen-

tiation into various lung stem/progenitor cells (Weiss et al.,

2011), either for transplantation of autologous lung cells or

for seeding de-vitalized lung scaffolds ex vivo to generate

autologous lungs (Ott et al., 2010).

CF patients, either compound heterozygous DI507/

DF508 or homozygous DF508/DF508, lacking expression

of the normal CFTR protein, manifest various features of

CF disease. Individuals bearing either the DI507 or DF508

CFTR mutations at only one allele (i.e., WT/DI507 or WT/

DF508) are CF carriers and exhibit no defects in lung cell

function (Kerem et al., 1990). Thus, correction of CF iPSCs

derived from either DI507/DF508 or DF508/DF508 CF pa-

tients would be achieved by converting to WT either one

or bothmutant alleles. In this paper we first report targeted

correction of DI507/DF508 iPSCs with the resulting iPSCs,
corrected at a single allele, of genotype WT/DF508; as

such, they correspond to the heterozygous DF508 carrier

state. We demonstrated restored expression of both WT

CFTR mRNA and mature CFTR protein in cells differenti-

ated from a corrected, puroTK-excised clone 17-16-C1.

This was not unexpected since the CFTR gene-editing

approach simply restores the mutant DI507 or DF508 se-

quences in exon 10 toWT, with the only residual footprint

being the loxP sequences in intron 10. Starting with the

sameDI507/DF508 iPSCs, but utilizing a donor with greater

similarity to the DF508 CFTR allele (Figure 4), we were then

able to obtain corrected iPSCs of genotype WT/DI507.

Additionally, starting with two transgene-free DF508/

DF508 CF iPSC lines, we were able to obtain corrected iPSCs

of genotype WT/DF508.

The exquisite sensitivity of the allele-preferred targeting,

that only a single-base-pair difference (of a total 1.6 kbp

donor) could so dramatically specify the targeting for one

allele versus the other was perhaps unanticipated. In subse-

quent correction of anothermutant gene in disease-specific

human iPSCs (the PKLR gene in pyruvate kinase defi-

ciency), we again observed a precise allele-specific targeting

caused by a single-base-pair difference in 2.0 kb of homol-

ogy sequences (Z. Garate, A.M.C., B.R.D., and J.C. Segovia,

unpublished data). It is possible thatmismatches present in

the integrated genome sequences, particularly those in

proximity to nuclease cleavage sites, may dramatically in-

fluence the efficiency of targeting via decreasing the effi-

ciency of strand invasion, recognition of the donor as a ho-

mologous template, and/or synthesis-dependent strand

annealing. A preference for donor/target similarity also

was seen in ZFN-mediated targeting of the histone variant
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H3.3 gene (Goldberg et al., 2010), although to a lesser

extent than seen here. A requirement for exquisite match-

ing between donor sequences and target alleles also

recently was observed in AAV-mediated targeting, in which

even 1 bp mismatch in 1.8 kb of homology sequence

decreased the targeting efficiency for the APP locus by

4.5-fold (Deyle et al., 2014). Although this last report did

not include site-specific donor sequence DNA cleavage, it

does support the need for close donor-to-target sequence

similarity. Taken together, these results suggest that donor

sequences utilized for nuclease-mediated HDR should be

finely tuned to the targeted gene locus in the recipient cells.

Specific rules for the application of allele-preferred target-

ing remain to be developed (for example, the quantitative

effect of mismatch as a function of distance from nuclease

cleavage site). Finally, we note that this allele-specific tar-

geting offers the potential for preferential targeting of

specific mutant alleles, for example dominant alleles, by

sequence-specific nuclease-mediated gene correction.

Having successfully corrected various mutant CFTR al-

leles in the CF iPSCs, we sought to develop in vitro differen-

tiation conditions allowing us to confirm appropriately

regulated expression of the corrected CFTR gene. After a to-

tal of 19 days of differentiation, upregulated expression of

NKX2-1, SOX9, FOXP2, FOXA2, and CFTR were all consis-

tent with some cells committed to a lung cell fate arising

in the culture (Figure 3B). Future work will focus on enrich-

ing the NKX2.1-expressing lung progenitors to generate a

fully developed lung airway epithelium (Longmire et al.,

2012).

We demonstrated that CFTR gene correction resulted in

restoration of expression of the mature CFTR glycoprotein

and CFTR chloride channel function in iPSC-derived

epithelial cells. Mutant clone 17monolayers, when treated

withCFTR corrector VX809, exhibited partial restoration of

CFTR-mediated chloride transport. This indicates that the

failure of non-drug-treated clone 17 cultures to exhibit

CFTR chloride transport was not due to incomplete differ-

entiation. Furthermore, in Figure 3F we show that treat-

ment of the corrected line 17-16-C1 with the corrector

VX809 yields no further significant increase in chloride

channel activity. Since the 17-16-C1 line is WT/DF508,

this result suggests that the one corrected allele, corre-

sponding to the carrier CF state, produces sufficient WT

CFTR protein to respond normally.

Although in our experience there may be some differ-

ences, experiment to experiment, in the efficiency of differ-

entiation, these have not affected the primary observation

that, once differentiated, mutant CF iPSCs (17 and 28) yield

neither mature CFTR protein nor CFTR-specific chloride

channel activity; whereas corrected CF iPSCs (17-9-C1, 17-

14-C1, and 17-16-C1) and the normal control WA09 hESCs

yieldmatureCFTRprotein andCFTR-specific chloride chan-
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nel activity. Although prior studies of hESC/iPSC-derived

epithelial cells documented CFTR functional activity via

patch clamping of individual cells (Firth et al., 2014) or io-

dide efflux (Wong et al., 2012), our demonstrated ability to

evaluate functional CFTR chloride channel activity via the

Ussing chamber assay in hESC/iPSC-derived polarized

epithelial monolayers should be a valuable tool in CFTR

drug screening and analysis of various CFTRmutations.
EXPERIMENTAL PROCEDURES

Human subject and animal subject reviews were performed by

University of Texas Health Science Center institutional review

committees.

CF iPSC Generation and Characterization
CF fibroblasts were transduced with pMXs retroviruses expressing

OCT4, SOX2, KLF4, NANOG, and C-MYC, and reprogrammed

iPSC colonies, selected for in hESCmedia, were subsequently iden-

tified based on morphology and live cell staining for Tra-1-60 and

Tra-1-81. Pluripotency was assayed by teratoma formation and

confirmed by quantitative transcriptional profiling.

ZFN-Mediated Correction
Dissociated iPSCs were nucleofected with ZFNs together with a

1.6-kb donor construct (including WT exon 10, a loxP-flanked

pgk-puroTK selection cassette in intron 10, and flankinghomology

sequences). Colonies exhibiting CFTR correction were identified

by PCR and confirmed via Southern blot analysis.

In Vitro Differentiation and Functional Analysis
CF iPSCs, either mutant or corrected, andWA09 hESCs (as control)

were differentiated based onGreen et al. (2011) and Longmire et al.

(2012), with minor modifications. CFTR protein was detected by

immunoblotting. Ussing chamber analysis and 125I-efflux experi-

ments were performed to demonstrate restoration of CFTR-medi-

ated chloride channel function.

Assessment of Genome Integrity
The genomic integrity of mutant (clone 17) and two corrected CF

iPSC lines (17-9-C1 and 17-14-C1) was assessed by karyotyping,

whole-exome and whole-genome sequencing, and CGH.

Data Access
Next-generation sequencing data can be downloaded from http://

www.ncbi.nlm.nih.gov/Traces/sra/ using the study accession

numbers SRA058070 for the Complete Genomics whole-genome

dataset and Illumina exome sequencing data (in .bam file format).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, three figures, and two tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2015.02.005.
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